毕业论文
您现在的位置: 热处理 >> 热处理资源 >> 正文 >> 正文

不锈钢之热处理上

来源:热处理 时间:2022/6/21

不锈钢的分类及主要特性

不锈钢有多种分类方法,如化学成分、功能特征、金相组织和热处理特性等。从热处理方面考虑,按金相组织和热处理特性分更具有实际意义。

1铁素体不锈钢

主要合金元素是Cr,或加入少量稳定铁素体元素,如Al、Mo等,组织为铁素体。强度不高,不能用热处理方法调整性能,有一定塑性,脆性较大。在氧化类介质(如硝酸)中有良好的耐蚀性,在还原介质中耐蚀性较差。

2奥氏体不锈钢

含有较高的Cr,一般大于18%,并含有8%左右的Ni,有的以Mn代Ni,为进一步提高耐蚀性,还有得加入Mo、Cu、Si、Ti、Nb等元素。加热冷却时不发生相变,不能用热处理方法强化,具有较低的强度,高塑性和高韧性。对氧化性介质有强的抗蚀能力,加入Ti、Nb后具有较好的抗晶间腐蚀的能力。

3马氏体不锈钢

马氏体不锈钢主要含12~18%的Cr,并依照需要调整C量,一般在0.1~0.4%,对于制作工具时,C可达0.8~1.0%,有的为提高抗回火稳定性,加入Mo、V、Nb等。高温加热并以一定速度冷却后,组织基本是马氏体,依据C及合金元素的差异,有的可能会含有少量铁素体、残余奥氏体或合金碳化物。加热和冷却时会发生相变,因此,可以在很大范围内调整组织结构和形态,从而改变性能。耐蚀性不如奥氏体、铁素体及双相不锈钢,在有机酸中有较好的耐蚀性,在硫酸、盐酸等介质中耐蚀性较差。

4铁素体-奥氏体双相不锈钢

一般含Cr为17~30%,Ni含量3~13%,另外加入Mo、Cu、Nb、N、W等合金元素,含C量控制很低,依据合金元素比例不同,有的以铁素体为主,有的以奥氏体为主,构成两相同时存在的双相不锈钢。因其含有铁素体及强化元素,热处理后,强度比奥氏体不锈钢略高,塑、韧性好,基本上不能用热处理手段调整性能。有较高的耐蚀性,特别是在含Cl-介质中、海水中,有较好的耐点蚀和缝隙腐蚀、应力腐蚀的特点。

5沉淀硬化不锈钢

成分特点是除含有C、Cr、Ni等元素外,还含有Cu、Al、Ti等可以时效沉淀析出物的元素。可以通过热处理手段来调节力学性能,但其强化机理不同于马氏体不锈钢。由于其依靠析出沉淀相强化,所以C可以控制很低,因而其耐蚀性优于马氏体不锈钢,与Cr-Ni奥氏体不锈钢相当。

不锈钢的热处理

不锈钢以Cr为主的大量合金元素构成的成分特点,是其具有不锈、耐蚀的基本条件。要想充分发挥合金元素的作用,获得理想的力学和耐蚀性能,还必须通过热处理方法实现。

1

铁素体不锈钢的热处理

铁素体不锈钢一般情况下是稳定的单一铁素体组织加热、冷却不发生相变,故不能用热处理方法调整力学性能,其主要目的是减小脆性和提高抗晶间腐蚀能力。

①σ相脆性

铁素体不锈钢极易生成σ相,这是一种富Cr的金属化合物,硬而脆,特别容易在晶间形成,使钢变脆,并增加晶间腐蚀敏感性。σ相形成与成分有关,除Cr外,Si、Mn、Mo等都促进σ相形成;还与加工过程有关,尤其在~℃区间加热、停留,更促进σ相形成。但σ相形成是可逆的,重新加热到高于σ相形成温度会重新溶解于固溶体中。

②℃脆性

铁素体不锈钢在~℃区间长时间加热,会表现出强度升高、韧性下降即脆性增加的特征,尤其在℃时最明显,称℃脆性。这是因为,在这个温度下,铁素体内的Cr原子将重新排列,形成富Cr小区域,与母相共格,引起点阵畸变,产生内应力,使钢硬度升高、脆性增大。富Cr区形成的同时,必有贫Cr区出现,这对耐蚀性有不利影响。当将钢重新加热高于℃温度时,畸变、内应力会消除,℃脆性消失。

③高温脆性

加热到℃以上,并以快速冷却下来时,Cr、C、N等形成化合物在晶内、晶界析出,引起脆性增加和晶间腐蚀的发生。这种化合物可在~℃温度加热后快冷予以消除。

热处理工艺:

①退火

?为了消除σ相、℃脆性及高温脆性,可采用退火处理,在~℃加热、保温、然后空冷或炉冷。

?对于超纯铁素体不锈钢(含C≤0.01%,严格控制Si、Mn、S、P),退火加热温度可提高一些。

②去应力处理

在焊接和冷加工后,零部件可能产生应力,如果具体情况不宜采用退火处理,可以在~℃范围内加热、保温、空冷,可消除部分内应力,改善塑性。

2

奥氏体不锈钢热处理

奥氏体不锈钢中Cr、Ni等合金元素作用结果使Ms点降至室温以下(-30到-70℃)。保证奥氏体组织稳定,所以,加热、冷却时,在室温以上不发生相变。因此,奥氏体不锈钢热处理主要目的不是改变机械性能,而是提高耐蚀性。

1奥氏体不锈钢的固溶化处理

工艺:

在GB标准中,推荐加热温度范围较宽:~℃,通常采用-℃。考虑具体牌号成分,是铸件还是锻件等情况,在允许范围内,适当调节加热温度。加热温度低,C-Cr碳化物不能充分溶解,温度太高,也存在晶粒长大,降低耐蚀性问题。

冷却方式:应以较快速度冷却,防止碳化物再析出。在我国及其它一些国家标准中,标明固溶化后“快冷”,综合不同文献资料和实践经验,“快”的尺度可按如下情况掌握:

?含C量≥0.08%的;含Cr量22%、Ni量较高的;含C量虽0.08%,但有效尺寸3mm的,应水冷;

?含C量0.08%、尺寸3mm,可风冷;

?有效尺寸≤0.5mm的可空冷。

2奥氏体不锈钢的稳定化热处理

稳定化热处理只限于含稳定化元素Ti或Nb的奥氏体不锈钢,如1Cr18Ni9Ti、0Cr18Ni11Nb等。

工艺:

加热温度:这个温度应高于Cr23C6的溶解温度(-℃),低于或略高于TiC或NbC的开始溶解温度(如TiC的溶解温度区间为-℃),稳定化加热温度一般选在-℃,这会使Cr23C6充分溶解,使Ti或Nb再与其中C结合,而Cr则继续保留在奥氏体中。

冷却方式:一般采用空冷,也可采用水冷或炉冷,这应根据零件具体情况确定。冷却速度对稳定化效果无大影响。从我们试验研究结果看,从稳定化温度℃冷却到℃时,冷却速度为0.9℃/min和15.6℃/min,相比,金相组织、硬度、耐晶间腐蚀能力基本相当。

3奥氏体不锈钢消除应力处理

工艺:

在条件允许的情况下,采用固溶化处理、稳定化处理都可以较好的消除应力(固溶水冷还会产生一定应力),但,有时不允许采用这种方法,如回路中的管件、没有余量的完工件、形状特别复杂的易变形零件等,这时可采用℃以下温度加热的去应力方法,也可消除部分应力。如果工件是在强应力腐蚀环境中使用,必须彻底消除应力,则在选用材料时,就应予以考虑,如采用含稳定元素的钢,或采用超低碳奥氏体不锈钢。

“热处理技术”专注于分享最新、最全的热处理技术、设备信息,解决热处理技术难题。欢迎

转载请注明:http://www.0431gb208.com/sjslczl/708.html

  • 上一篇文章:
  • 下一篇文章: 没有了